Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Nat Biomed Eng ; 7(5): 661-671, 2023 05.
Article in English | MEDLINE | ID: covidwho-20234008

ABSTRACT

The targeted insertion and stable expression of a large genetic payload in primary human cells demands methods that are robust, efficient and easy to implement. Large payload insertion via retroviruses is typically semi-random and hindered by transgene silencing. Leveraging homology-directed repair to place payloads under the control of endogenous essential genes can overcome silencing but often results in low knock-in efficiencies and cytotoxicity. Here we report a method for the knock-in and stable expression of a large payload and for the simultaneous knock-in of two genes at two endogenous loci. The method, which we named CLIP (for 'CRISPR for long-fragment integration via pseudovirus'), leverages an integrase-deficient lentivirus encoding a payload flanked by homology arms and 'cut sites' to insert the payload upstream and in-frame of an endogenous essential gene, followed by the delivery of a CRISPR-associated ribonucleoprotein complex via electroporation. We show that CLIP enables the efficient insertion and stable expression of large payloads and of two difficult-to-express viral antigens in primary T cells at low cytotoxicity. CLIP offers a scalable and efficient method for manufacturing engineered primary cells.


Subject(s)
Integrases , Lentivirus , Humans , Lentivirus/genetics , Integrases/genetics , Integrases/metabolism , Gene Knock-In Techniques , Transgenes/genetics , Recombinational DNA Repair
3.
Cell Rep ; 41(13): 111892, 2022 12 27.
Article in English | MEDLINE | ID: covidwho-2149450

ABSTRACT

Natural killer (NK) cells are cytotoxic effector cells that target and lyse virally infected cells; many viruses therefore encode mechanisms to escape such NK cell killing. Here, we interrogate the ability of SARS-CoV-2 to modulate NK cell recognition and lysis of infected cells. We find that NK cells exhibit poor cytotoxic responses against SARS-CoV-2-infected targets, preferentially killing uninfected bystander cells. We demonstrate that this escape is driven by downregulation of ligands for the activating receptor NKG2D (NKG2D-L). Indeed, early in viral infection, prior to NKG2D-L downregulation, NK cells are able to target and kill infected cells; however, this ability is lost as viral proteins are expressed. Finally, we find that SARS-CoV-2 non-structural protein 1 (Nsp1) mediates downregulation of NKG2D-L and that Nsp1 alone is sufficient to confer resistance to NK cell killing. Collectively, our work demonstrates that SARS-CoV-2 evades direct NK cell cytotoxicity and describes a mechanism by which this occurs.


Subject(s)
COVID-19 , NK Cell Lectin-Like Receptor Subfamily K , SARS-CoV-2 , Viral Nonstructural Proteins , Humans , Cell Death , COVID-19/metabolism , Down-Regulation , Killer Cells, Natural/metabolism , Ligands , NK Cell Lectin-Like Receptor Subfamily K/metabolism , SARS-CoV-2/metabolism
4.
Nat Commun ; 13(1): 2766, 2022 05 19.
Article in English | MEDLINE | ID: covidwho-1927082

ABSTRACT

A major challenge in coronavirus vaccination and treatment is to counteract rapid viral evolution and mutations. Here we demonstrate that CRISPR-Cas13d offers a broad-spectrum antiviral (BSA) to inhibit many SARS-CoV-2 variants and diverse human coronavirus strains with >99% reduction of the viral titer. We show that Cas13d-mediated coronavirus inhibition is dependent on the crRNA cellular spatial colocalization with Cas13d and target viral RNA. Cas13d can significantly enhance the therapeutic effects of diverse small molecule drugs against coronaviruses for prophylaxis or treatment purposes, and the best combination reduced viral titer by over four orders of magnitude. Using lipid nanoparticle-mediated RNA delivery, we demonstrate that the Cas13d system can effectively treat infection from multiple variants of coronavirus, including Omicron SARS-CoV-2, in human primary airway epithelium air-liquid interface (ALI) cultures. Our study establishes CRISPR-Cas13 as a BSA which is highly complementary to existing vaccination and antiviral treatment strategies.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Antiviral Agents/pharmacology , Humans , Liposomes , Nanoparticles , SARS-CoV-2/genetics
5.
Cell Rep Methods ; 2(2): 100170, 2022 Feb 28.
Article in English | MEDLINE | ID: covidwho-1664828

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the third human coronavirus within 20 years that gave rise to a life-threatening disease and the first to reach pandemic spread. To make therapeutic headway against current and future coronaviruses, the biology of coronavirus RNA during infection must be precisely understood. Here, we present a robust and generalizable framework combining high-throughput confocal and super-resolution microscopy imaging to study coronavirus infection at the nanoscale. Using the model human coronavirus HCoV-229E, we specifically labeled coronavirus genomic RNA (gRNA) and double-stranded RNA (dsRNA) via multi-color RNA immunoFISH and visualized their localization patterns within the cell. The 10-nm resolution achieved by our approach uncovers a striking spatial organization of gRNA and dsRNA into three distinct structures and enables quantitative characterization of the status of the infection after antiviral drug treatment. Our approach provides a comprehensive imaging framework that will enable future investigations of coronavirus fundamental biology and therapeutic effects.

6.
Cell Rep Med ; 2(4): 100245, 2021 04 20.
Article in English | MEDLINE | ID: covidwho-1155662

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) and variants has led to significant mortality. We recently reported that an RNA-targeting CRISPR-Cas13 system, called prophylactic antiviral CRISPR in human cells (PAC-MAN), offered an antiviral strategy against SARS-CoV-2 and influenza A virus. Here, we expand in silico analysis to use PAC-MAN to target a broad spectrum of human- or livestock-infectious RNA viruses with high specificity, coverage, and predicted efficiency. Our analysis reveals that a minimal set of 14 CRISPR RNAs (crRNAs) is able to target >90% of human-infectious viruses across 10 RNA virus families. We predict that a set of 5 experimentally validated crRNAs can target new SARS-CoV-2 variant sequences with zero mismatches. We also build an online resource (crispr-pacman.stanford.edu) to support community use of CRISPR-Cas13 for broad-spectrum RNA virus targeting. Our work provides a new bioinformatic resource for using CRISPR-Cas13 to target diverse RNA viruses to facilitate the development of CRISPR-based antivirals.


Subject(s)
CRISPR-Cas Systems/genetics , RNA Viruses/genetics , RNA, Guide, Kinetoplastida/metabolism , COVID-19/pathology , COVID-19/virology , Humans , RNA Virus Infections/pathology , RNA Virus Infections/virology , RNA Viruses/isolation & purification , RNA, Viral/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Species Specificity
7.
Cell ; 181(4): 865-876.e12, 2020 05 14.
Article in English | MEDLINE | ID: covidwho-684968

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic, caused by the SARS-CoV-2 virus, has highlighted the need for antiviral approaches that can target emerging viruses with no effective vaccines or pharmaceuticals. Here, we demonstrate a CRISPR-Cas13-based strategy, PAC-MAN (prophylactic antiviral CRISPR in human cells), for viral inhibition that can effectively degrade RNA from SARS-CoV-2 sequences and live influenza A virus (IAV) in human lung epithelial cells. We designed and screened CRISPR RNAs (crRNAs) targeting conserved viral regions and identified functional crRNAs targeting SARS-CoV-2. This approach effectively reduced H1N1 IAV load in respiratory epithelial cells. Our bioinformatic analysis showed that a group of only six crRNAs can target more than 90% of all coronaviruses. With the development of a safe and effective system for respiratory tract delivery, PAC-MAN has the potential to become an important pan-coronavirus inhibition strategy.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , CRISPR-Cas Systems , Influenza A Virus, H1N1 Subtype/drug effects , RNA, Viral/antagonists & inhibitors , A549 Cells , Antibiotic Prophylaxis/methods , Base Sequence , Betacoronavirus/genetics , Betacoronavirus/growth & development , COVID-19 , Clustered Regularly Interspaced Short Palindromic Repeats , Computer Simulation , Conserved Sequence , Coronavirus/drug effects , Coronavirus/genetics , Coronavirus/growth & development , Coronavirus Infections/drug therapy , Coronavirus Nucleocapsid Proteins , Coronavirus RNA-Dependent RNA Polymerase , Epithelial Cells/virology , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/growth & development , Lung/pathology , Lung/virology , Nucleocapsid Proteins/genetics , Pandemics , Phosphoproteins , Phylogeny , Pneumonia, Viral/drug therapy , RNA-Dependent RNA Polymerase/genetics , SARS-CoV-2 , Viral Nonstructural Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL